E 470 - Accelerator Design

Al A An

A Az Az

An As: An

ASIC Design Goals

Performance = Frequency * Work Per Cycle
Two opposing constraints to reach higher
performance:
o Maximize Frequency
B Optimizing critical path often means having
to do less per cycle
o Maximize Work Per cycle
B Adding logic often increases critical path
delay
Logic Area is usually not main limitation
o Parallel Logic -

m Adds work per cycle without increasing
critical path

o Serial Logic - step by step
B Adds work per cycle at the cost of delay
B Necessary for Most Problems
m Consider Splitting across multiple cycles

Frequency

* Do less work per cycle

but get higher
frequency

Constant
Performance

’
Work Per Cycle

Fibonacci Accelerator: The Good

High Frequency
o Critical path is only one adder deep generally
o Allows frequencies around 100 Mhz
o Biggest Calculation

Solves easy problems quickly
o Gets low numbered Fibonacci quickly

Good practice for variable delay systems
o Have to set up & wait for handshake
o Results not guaranteed immediately

~

Fibonacci Accelerator: The Bad o oeperdonsy,
computation step relies on

o Data Dependency Chain previous step

o Difficult to parallelize this algorithm
o Each computation step relies on the previous result
e Math solutions are overly complicated
o Requires floating point, square root, and and division
— all super expensive in hardware
e Variable Latency
o Bigger inputs can take a long time

01123581321

Improving Fibonacci: Caching

e Fibonacci involves recomputing the same

series
o Why recompute if we don’t have to?
o Solut|i10n — Save computation states in | Cached Input Cached Results F_,, F_
a cache
e When new input is introduced, start its 8 13, 21
computation at the closest cached input
15 377,610
e Example: New Input of 10 — —
o Find Closest Cached Input: 8
o Canresume from 8 and compute for 2
cycles
e Problem — Cache Lookup
o Don’t want to have to traverse cache Input Address Range | Cached Result
o Use some bits of input as an address
0-127 i
e Speeds up average case by # of cache 128-255 R

lines, but only once caches are populated

Improving Fibonacci: Look Up Tables

Similar idea to caching but hard coded in
o Why wait for cache to fill if we know
the result at synthesis time

Hard code some amount of starting Cached Input Cached Result
points
o Example: If input is over 32, start 8 21
15 610
Real Life examples could be:
O sin, cos, trigonometry calcs 22 17711

o log, In, e"x
o Any math function that is often
iteratively approximated

Improving Fibonacci: Algorithm

Deceptive Dependency Chain e Take Fibonacci numbersa, b, c, d, e, f
o Does every result depend ONLY on o c=b+a
the previous result? o dec+b=b+a+b-od=a+2b
o Nol! It can also be expressed as a B =a+be<l
combination of data we already have -
o e=d+c—e=2a+3b
B =a<<l+b<<l+b
_ _ o f=e+d=f=3a+5b
Can calculate 2 fibonacci numbers at a B ca<<l+a+b<<2+b

time with no logic depth cost
o Calculating c and d both only require

o gintes?l?chlisti;rneet?acsncallyfree 0 1 1 2 3 5 8 13 21
m multiply or divide by a power 0+1=1 |

of 2
o 2x speedup in every case!

Can calculate 4 fib #s at a time with some
logic depth cost

Addition

e It turns out adding 3 numbers is not twice as hard as adding 2 number
o Takes ~twice the area but only a bit more delay

e Delay is dominated by bit width of the add, not by # of operands
o So calculating 4 Fib #s at a time would be viable!

Addition Delay and Area

@ Delay (ns) @ Area (1000 um”2

10
8.5 8.6

7.6

34

1.8

Zz=a+b+c+d+ e;

2-Adder 3-Adder 4-Adder 5-Adder

Adder Types Carry Save Adder: can add 3 numbers with minimal

extra delay cost

With a bit width n and a number of operands 2+m
® Delay~™=n+m
® Area™=n*m

Brent-Kung Adder: add 2
numbers, Yosys default
With a bit width n

e Delay ~=log,(n)

® Area™=n

o 4 2 [o]
@
0
//
/‘

S(4) 5(3) S(2) 5Q1) “

Multiplication

Delay several times worse Adder vs Multiplier Comparison

than addition
o Usually would dominate
critical path if left in one

B Adder [Multiplier

cycle
32 bit x 32 bit = 64 bit
o Extreme area usage Delay
Use bit shifts where
possible!
o Bit shifts are basically
free

Area

Division

. Division is hard i . T
'C‘)"S'ORZ;IV E; 4 delay 32-Bit Addition, Multiplication, and Division

o Profiled with 32 bit / B Adder [Multiplier [l Division
32 bit

e If division is necessary:
o use powers of 2 and
bit shifting
o Write your own
multi-cycle division
o Multi-cycle paths!

Delay

Area

0 50 100 150 200

