
CPE 470 - Accelerator Design



ASIC Design Goals
● Performance = Frequency * Work Per Cycle
● Two opposing constraints to reach higher 

performance:
○ Maximize Frequency

■ Optimizing critical path often means having 
to do less per cycle

○ Maximize Work Per cycle
■ Adding logic often increases critical path 

delay

● Logic Area is usually not main limitation
○ Parallel Logic - 

■ Adds work per cycle without increasing 
critical path

○ Serial Logic - step by step
■ Adds work per cycle at the cost of delay
■ Necessary for Most Problems
■ Consider Splitting across multiple cycles

Work Per Cycle

Fr
eq

u
en

cy

Constant 
Performance

Do less work per cycle 
but get higher 
frequency



Fibonacci Accelerator: The Good
● High Frequency

○ Critical path is only one adder deep generally
○ Allows frequencies around 100 Mhz
○ Biggest Calculation

● Solves easy problems quickly
○ Gets low numbered Fibonacci quickly

● Good practice for variable delay systems
○ Have to set up & wait for handshake
○ Results not guaranteed immediately



Fibonacci Accelerator: The Bad Glossary
Data Dependency: 
computation step relies on 
previous step● Data Dependency Chain

○ Difficult to parallelize this algorithm
○ Each computation step relies on the previous result

● Math solutions are overly complicated
○ Requires floating point, square root, and and division 

→ all super expensive in hardware
● Variable Latency

○ Bigger inputs can take a long time



Improving Fibonacci: Caching
● Fibonacci involves recomputing the same 

series
○ Why recompute if we don’t have to?
○ Solution → Save computation states in 

a cache
● When new input is introduced, start its 

computation at the closest cached input

● Example: New Input of 10
○ Find Closest Cached Input: 8
○ Can resume from 8 and compute for 2 

cycles
● Problem → Cache Lookup

○ Don’t want to have to traverse cache
○ Use some bits of input as an address

● Speeds up average case by # of cache 
lines, but only once caches are populated

Cached Input Cached Results Fn-1, Fn

8 13, 21

15 377, 610

_ _

Input Address Range Cached Result

0-127 _ : _ , _

128-255 _ : _ , _



Improving Fibonacci: Look Up Tables

Cached Input Cached Result

8 21

15 610

22 17711

● Similar idea to caching but hard coded in
○ Why wait for cache to fill if we know 

the result at synthesis time

● Hard code some amount of starting 
points

○ Example: If input is over 32, start

● Real Life examples could be:
○ sin, cos, trigonometry calcs
○ log, ln, e^x
○ Any math function that is often 

iteratively approximated



Improving Fibonacci: Algorithm
● Deceptive Dependency Chain

○ Does every result depend ONLY on 
the previous result?

○ No! It can also be expressed as a 
combination of data we already have

● Can calculate 2 fibonacci numbers at a 
time with no logic depth cost
○ Calculating c and d both only require 

one addition each
○ Bit shifts are basically free

■ multiply or divide by a power 
of 2

○ 2x speedup in every case!

● Can calculate 4 fib #s at a time with some 
logic depth cost

● Take Fibonacci numbers a, b, c, d, e, f
○ c = b + a
○ d = c + b = b + a + b → d = a + 2b 

■ = a + b<<1
○ e = d + c → e = 2a + 3b 

■ = a << 1 + b <<1 + b
○ f = e + d = f = 3a + 5b

■ = a << 1 + a + b << 2 + b



Addition
● It turns out adding 3 numbers is not twice as hard as adding 2 number

○ Takes ~twice the area but only a bit more delay
● Delay is dominated by bit width of the add, not by # of operands

○ So calculating 4 Fib #s at a time would be viable!



Adder Types Carry Save Adder: can add 3 numbers with minimal 
extra delay cost
With a bit width n and a number of operands 2+m

● Delay ~= n + m
● Area ~= n * m

Brent-Kung Adder: add 2 
numbers, Yosys default
With a bit width n 

● Delay ~= log
2
(n)

● Area ~= n 



Multiplication

● Delay several times worse 
than addition

○ Usually would dominate 
critical path if left in one 
cycle

● 32 bit x 32 bit = 64 bit
○ Extreme area usage

● Use bit shifts where 
possible!

○ Bit shifts are basically 
free



Division

● Division is hard
○ Really bad delay
○ Profiled with 32 bit / 

32 bit

● If division is necessary:
○ use powers of 2 and 

bit shifting
○ Write your own 

multi-cycle division
○ Multi-cycle paths!


